AIX BLOG

Thinking will not overcome fear but action will.

Public Verifiability from Pairings in Secret Sharing Schemes

Public Verifiability from Pairings in Secret Sharing Schemes 作者:Somayeh Heidarvand and Jorge L. Villar 机构:Universitat Politècnica de Catalunya, Spain 来源:Selected Areas in Cryptography 2008...

A Simple Publicly Verifiable Secret Sharing Scheme and its Application to Electronic Voting

A Simple Publicly Verifiable Secret Sharing Scheme and its Application to Electronic Voting 作者:Berry Schoenmakers 机构:Department of Mathematics and Computing Science, Eindhoven University of...

Publicly Verifiable Secret Sharing

Publicly Verifiable Secret Sharing 作者:Markus Stadler 机构:Institute for Theoretical Computer Science, ETH Zurich 来源:EUROCRYPT’96 [原文链接] 1. Introduction   标准的秘密共享方案(如Shamir方案[SHA79])假设诚实方的存...

VSS from Distributed ZK Proofs and Applications

VSS from Distributed ZK Proofs and Applications 作者:Shahla Atapoor1, Karim Baghery1, Daniele Cozzo1,2,Robi Pedersen1 机构:1 COSIC, KU Leuven; 2 IMDEA Software Institute 来源:Asiacrypt 2023 [原文...

Turning HATE Into LOVE | Compact Homomorphic Ad Hoc Threshold Encryption for Scalable MPC

Turning HATE Into LOVE: Compact Homomorphic Ad Hoc Threshold Encryption for Scalable MPC 作者:Leonid Reyzin1, Adam Smith1, Sophia Yakoubov2 机构:1 Boston University; 2 Aarhus University 来源:In...

A non-interactive (t, n)-publicly verifiable multi-secret sharing scheme

A non-interactive (t, n)-publicly verifiable multi-secret sharing scheme 作者:Samaneh Mashahdi, Bagher Bagherpour, Ali Zaghian 机构:Cryptography and Data Security Lab., School of Mathematics, I...

Homogeneous Liner Recursions

Homogeneous Liner Recursions (HLR) 1. HLR定义 设 $t \in N^+$,$c_ 0,\cdots ,c_ {t-1}, a_ 1,\cdots ,a_ t \in R^+$,次数为 $t$ 的齐次线性递推可以定义为: \[HLR:\left\{\begin{matrix} u_ 0=c_ 0,\ u_ 1=c_ 1,\ \cd...

How to share a secret, infinitely

How to share a secret, infinitely 1. Introduction 秘密共享是一种将秘密信息在 $n$ 方之间进行分配的方法,通过这种方法,任何符合条件的子集(授权子集, qualified subset)都可以重构该秘密,而任一不符合条件的子集(非授权子集, unqualified)对该秘密一无所知。授权子集的集合称为访问结...

A (t,n) multi-secret sharing scheme

A $(t,n)$ multi-secret sharing scheme 1. Introduction 1979年,Shamir [SHA79]和Blakley [BLA79]提出了 $(t,n)$ 门限方案,其中Shamir的方案是基于拉格朗日插值多项式,而Blakley的方案是基于线性射影几何。 然而,Shamir和Blakley的方案都是单秘密方案,...

RAMP Scheme

RAMP Scheme Introduction of RAMP Scheme 本文基于门限秘密共享方案,提出了在牺牲部分安全性的前提下更加高效的 $(d,k,n)$ RAMP协议,即将秘密分成 $n$ 份,至少 $k$ 人可以恢复出秘密,少于 $d$ 人无法获得关于秘密的任何信息。其中,$d$ 称为lower threshold,$k$ 称为upper thr...