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Provable Security

Three Steps of Provable Security:
® Precisely specify threat model
® Formal model and definition of what security means
® Propose a construction
® Algorithm, protocol, scheme
e Write a formal proof

® Formalize the security of Protocol XXX
® Decide on XXX assumption
® Provide a proof by reduction
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Security Reduction

We would like to prove DHKE is Key Recovery secure
® by reducing to Discrete Logarithm Problem X
® by reducing to Computational Diffie-Hellman Problem v

I Security Reduction? ] A CDH vs DL [
We would like to prove that DHKE is KR secure. CDH fl DL ZEMXREBHA ?
« by reducing KE-security to DL assumption IR

?
Unfortunately not known how to do it.

%‘ %

0.0 7

Answer: Depends

We would like to prove DHKE is Indistinguishable (IND) secure
® by reducing to Decisional Diffie-Hellman Problem v
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Contradistinction

e DL: Given g, g%, compute a;

e CDH: Given (g, ¢°), compute g%;

e DDH: Given (g%, g, g®°) and (g%, ¢°, g*), determine
distribution.

DDH<CDH<DL
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Security Reduction
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Universal Composability

ozt
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A HGIE I RAE .
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Approach

ZeWIE TR A, —AZET RN, Pk s Xk
TER AP B —AF R A T ARG
® Property-based (game-based)
® CPA/CCA-security in encryption
® Completeness, soundness, zero-knowledge property in ZK
proofs
® Simulation-based
°® NIZK
® Secure Computation

Summarize of ZJU 00 14 / 52



# “Ideal World” W, MR EH RIEHEE, o RiEKE—FF
X “Bpit” B, kst 34 RE “Real World” 4o “Ideal
World”, W #R#30#% 2 “Simulation-Based Security”

Simulation Paradigm: UC Security

[Canetti'0L]: Universal Compasition é

D —. (TS

— \ \ N\
\ N N
g _®|g &
s protocolw  W_S v : @ o=
REAL G IDEAL
Definition: protecol & is a secure realization of task & if:
for every adversary A in the real world,

there exists an adversary (simulator) 5 in the ideal world
5.1, the two worlds ore indistinguishable fo oll environments Z
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e Schnorr’s Protocol

® 5 wH5E
e Universally composable security: A new paradigm for
cryptographic protocols[Can01]
e How to simulate it—a tutorial on the simulation proof
technique[Lin17]
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What is Black-box Reduction

E LA EAF R Ry TIEY, EAWBSGHEA WL Z L
%#&é%,ﬁ&,bMM%éimﬂ%%%Mﬁ%ﬁﬁﬁﬁﬁ
JRIE M,
o loB G HAL, WML ASR., WEMWAKEFELFTE, OE
TEB — AT AN 5 — A #y 3¢ [HILL99, GGM86, Rom90],

FERXARE L, X&a2yx L ang, B A CAGE T N4
1T HRF I8 IRIEFe | BT F 2 Mk by Fokr, T AR TR IERAT
F oy RAF N A% [BBF13].
* & W Impagliazzo #= Rudich[IR89] 12 &, Reingold 4
AT T 4k [RTVO04]:Fully BBR, SemiBBR, Weakly
BBR.
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Merkle-Damgard Construction

CRYPTO 1989, Merkle #= Damgard 32 T —#P 453 F 3 #yid
BHRR R R f BA LRI AMIT, PTIFE 8945 BEGIRIE

B 1> )

ALY
Message| Message| Message!
block 1| block 2 block n
Messagd Message Message| Length
block 1 | block 2 block n | padding

R T A
@+

"length extension attack’
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What is a secure hash function?

Key Point: Collision resistance & Pre-image resistance.

We want hash functions to be random oracles.
o [AHLTR Z HLE —AS T AR F 3
o [WALFHF A b R ALY, W L AA duabde fedn R A% .

AT I EIERE, 324 T random oracle model
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In 2004, Maurer et al. 258 7 B E—ATEPLTAZ PL:

it” s always possible to replace functionality A (e.g., a random
oracle) with another functionality B (e.g., an ideal compression
function) provided that the following rules are satisfied:

® There exists a way to ‘construct’ something ‘like’ A
out of B.

® There exists a way to ‘simulate’ something ‘like’ B
using A.

® An attacker who interacts with constructed A-like thing, B

cannot tell the difference (i.e., can’ t differentiate it) from
A, simulated B-like thing.

%% Matthew Green’s blog
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RHERTUAS ARG T/ RKE L, T2OE=ANEK:
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Top-down approach: good when you
already know the field, and there are
enough primitives/assumptions available

!
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PIMSEE T S
We build
N — e We build I:hl.’.‘I
Co—

Bottom-up approach: good for teaching,
research (easier to start with basics) and
getting papers published
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e X F Elgamal
o A F Lift Elgamal () & M/T)

e Example: Hamming Distance

Summarize of ZJU



® LEZIIITE
OT #hix
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History of OT

First related protocol: "Conjugate coding" (1970s)
Rabin’s OT (1981) [Rab05]

l-out-of-2 OT, Even et al. (1982) [EGL85]
l-out-of-n OT, Brassard et al. (1986) [BCR86]
Beaver 96 [Bea96]

IKNP 03 (52 8) [IKNPO3]
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Basics Construction about OT

Rabin’s OT = (1,2)-OT
Random OT = (1,2)-OT
(1,2)-OT = (1,n)-0OT
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What is NIZK?

Non-interactive zero-knowledge (NIZK) proofs are
cryptographic primitives, where information between a prover
and a verifier can be authenticated by the prover, without
revealing any of the specific information beyond the validity of
the statement itself{ GK96].

® Advantage: Non-interactive. It is widely used in
distributed systems such as blockchain.

¢ Based on mathematical constructs like elliptic curve /
pairing-based cryptography.

e verifiable proofs are short and easily verifiable.
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Famous Protocol

¢ zk-SNARK, Alessandro Chiesa et al., 2012 [BCCT12]
® Bulletproofs, Benedikt, Boneh et al., 2017 [BBB*18§]
¢ zk-STARK, Ben-Sasson et al., 2018 [BSBHR18]

Trusted satup

zk-SNARKs

Prover Verdler Sle

23s 10ms 28BB

Very fast  Fastest Smallest
Bulletproofs zk-STARKs
Prover Verifier sice Prover Verifier Size
30s 1100ms 1,3KB 1.6s 1léms >40KB
Slawest Slowest Migddle Fastest Very fast Big
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What is zkSNARK

Zero-Knowledge Succinct Non-Interactive Argument of
Knowledge

® An argument system satisfying the following properties:

® Zero-knowledge: the verifier learns nothing from the proof

® Succinctness: the proof size and verification time is
subliner to the statement and input

® Non-interactive: A single round protocol

® Argument of knowledge(knowledge soudness): similar to
proof of knowledge but the prover is computationally
bounded knows the witness.

® Completeness and Soundness
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Example: QR

QR = {(N,y) : 3z s.t. y = 2% mod N}

s -

Prover Verifier
b

Sampe r st. ged(r, N)=1 f b=1: send z=r

Comput=sst modN else: send z=rvy mod N Sampebed0d)

Accepts only if
Z2=sy'» mod N

® Soundness: If the claim is false, the verifier will accept
with probabilty < % Repeat to decrease the cheating
probability.

® Knowledge Soundness: the extractor can rewind the
prover to obtain r and thus reconstruct /y
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Why zkSNARK?

e A powerful tool for providing privacy and scalability
® zero-knowledge allows the prover to reveal only necessary
information
® succinctness enables efficient outsourcing computation
® especially useful in decentralized systems
e Examples:
® private transactions over public blockchains
® scalablity: proof-based Rollups (zkRollup)
® Bridging blockchains: proof of consensus (zkBridge)

B 5 A AL LR E R e % T RIS
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Why Lattice?

Perfect Security e.g. OTP

® impractical
Computational Security e.g. RSA, DL, ECC
® be challenged with Riemann hypothesis, Quantum

computer (e.g. Shor Alg.)...

What are the difficult problems in the post-quantum era?

Distinguish between quantum cryptography and post-quantum cryptography.
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What is Lattice

Definition: In linear algebra, a lattice L C R" is the set of all
integer linear combinations of vectors from a basis {by,-- by}
of R™. In other words, L = {>_ a;b; : a; € Z}

(0,1) (1,1) (2,1)

X
(0,0) (1,0) (0,0)

X X X X X X X X X X X X

A =7n A=B-Z": B e R*"
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SIS Problem

SIS (Short Integer Solution) Problem|[Ajt96]

ail a12 * e a1n x1

a1 a22 S a2 X2
Let A = S =

aml am2 - Omn Tn

Easy to get z from Az = 0 (via Gaussian elimination)
What if some restrictions are added to z ¢

z; € Zy and ||z|| < d
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LWE (Learning With Errors) Problem[Reg09]

aly @2 o Ay 7 b1

a1 @ - a To b
Let A = 2 22 2n , T = , b=

Aml1  Am2 - Amn Tn, bn

Easy to get = from Az = b (via Gaussian elimination)
What if we add "noise" to the left side of the equation?
el

Az + e = b where e = e

€En
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More Info

Daniele Micciancio (UCSD)

COURSE: Lattices Algorithms and Applications

LECTURE

BOOK:Complexity of lattice problems: a cryptographic
perspective
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